Problem Solving

Learning Outcome

- List five (5) steps in problem solving
 8.2.1
- Identify input, process and output from a given problem.
- Define algorithm. 8.2.3.1
- Solve a given problem using algorithm. 8.2.3.1
- Explain the purpose of each control structure.
 8.2.3.2
- Apply appropriate control structure in problem solving. 8.2.3.2

Steps in Problem Solving

• There are five (5) steps in problem solving.

Steps in Problem Solving

Steps in Problem Solving

- Testing is the process of finding errors in a program, and debugging is the process of correcting errors that are found
- An error in a program is called a bug

- Organize all the material that describes the program
- intended to allow another person or the programmer at a later date, to understand the program
- consist of a detailed description of what the program does and how to use the program

Testing

Documentation

Output /

result

Error in the program

> Syntax error :

Program error that occurs when the code violates the syntax or grammar of the programming language.

e.g : misspelling a command, leaving out require command.

> Logic error :

Flow in program design that causes inaccurate results. e.g : sum = no1- no2

> Runtime error :

Program error or event that causes the program to stop running.

e.g : error when using the internet

8.2.2 Problem Analysis

- Input-Process-Output (IPO) Analysis
 - to analyze problems and develop algorithms
 - to organize and summarize the results of a problem analysis
 - to shows where in the solution the processing takes place
 - It can also be represent using IPO chart/table.

INPUT PROCESS OUTPUT

8.2.2 Problem Analysis with

Input-Process-Output (IPO) Chart

Input	Processing	Output
Read Data An item – an input/data that is needed by computer.	Perform Computation an intermediate value that the algorithm uses when processing the input into the output	Display Results Print result/s on screen, on paper etc.

10/30/2015 • 8

Footer Text

8.2.2 Problem Analysis with Input-Process-Output (IPO) Chart Examples 6

ICT System – Input, Process, Output

8.2.2 Problem Analysis with Input-Process-Output (IPO) Chart → Math's Problem

Example 1

Problem statement: calculate total of two numbers

Problem Analysis:

ł

PROCESS	OUTPUT
Calculate total total = no1+ no2	total
	PROCESS Calculate total total = no1+ no2

8.2.2 Problem Analysis with Input-Process-Output (IPO) Chart → Math's Problem

Example 2

Problem statement: Calculate the area of a rectangle

Problem Analysis:

INPUT	PROCESS	OUTPUT
width height	Calculate area of rectangle area = width x height	area of rectangle

- step-by-step instructions that will transform the input into the output
- can be represent using 2 methods;

o pseudocode OR

o flow chart

8.2.3.1 Algorithm

Pseudocode

Flow Chart

- an artificial, informal language (similar to English) used to develop algorithms
- a *notation* resembling a simplified programming language, used in program design
- a *graphical representation* of a algorithm in relation to its sequence of functions
- special-purpose symbols connected by arrows (flow lines)

Algorithm

Solve a problem using an Algorithm Conclusion

Flow Chart symbols and Meaning

Symbol,	Name,	Meaning
	Flow line	Used to connect symbols and indicate the flow of logic.
\square	Terminal	Used to represent the beginning (Start) or the end (End) of a task.
	Input/output	Used for input and output operations, such as read- ing and printing. The data to be read or printed are described inside.
	Process	Used for arithmetic and data-manipulation opera- tions. The instructions are listed inside the symbol.
\diamond	Decision	Used for any logic or comparison operations. Unlike the input/output and processing symbols, which have one entry and one exit flowline, the decision symbol has one entry and two exit paths. The path chosen depends on whether the answer to a ques- tion is "yes" or "no."

8.2.3.1

Solve a problem using an Algorithm

- General's Problem
 - Feeling thirsty
 - Withdrawing money from an ATM machine.
- Mathematical Problem

 Finding an area of shape (rectangle, triangle)
 Mean for marks

Algorithm

Solve a problem using an Algorithm

General's Problem → Feeling Thirsty

Do Problem Analysis (prepare an IPO)

8.2.3.1

Input	Processing	Output
 Water Buy any drinking water from shop or a vending machine, OR Get it from friend, OR 	 Drinking Open the cap and start drinking. Repeat the process until satisfy. 	Happy Face !

Algorithm

Solve a problem using an Algorithm

- General's Problem
 → Feeling thirsty
 - Examples ofPseudocode
 - a notation
 resembling a
 simplified
 programming
 language, used
 in program
 design

START

WALK TO NEAREST SHOP BUY A DRINK DRINK HAPPY FACE END

Algorithm

Solve a problem using an Algorithm

- General Problem →
 Feeling thirsty
 - Examples of Flow
 Chart
 - a graphical representation of algorithm in relation to its sequence of functions

Algorithm

Solve a problem using an Algorithm

General's Problem → Withdraw Money from ATM

Do Problem Analysis (prepare an IPO)

8.2.3.1

Input	Processing	Output
 Auto-teller machine (ATM) card. PIN Number. 	 Insert ATM card on the intake slot. Enter correct PIN number upon request. Choose Withdrawal from menu list. Enter an amount to withdraw. Collect money from the money output deck. Collect slip from the slip output deck. 	 Money Transaction Slip

Algorithm

Solve a problem using an Algorithm

- General's Problem →
 Withdraw Money from
 ATM
 - Examples of
 Pseudocode
 - a notation resembling a simplified programming language, used in program design

START

INSERT ATM CARD ENTER PIN NUMBER CHOOSE WITHDRAW ENTER AN AMOUNT COLLECT MONEY AND SLIP FND

Algorithm

Solve a problem using an Algorithm

- General's Problem →
 Withdraw Money from ATM
 - Examples of Flow Chart
 - a graphical representation of a algorithm in relation to its sequence of functions

10/30/2015 • 22

8.2.3.1 Algorithm Solve a problem using an Algorithm

- General's Problem →
 Withdraw Money from
 ATM
 - Examples of Flow Chart
 - a graphical representation of algorithm in relation to its sequence of functions

Algorithm

Solve a problem using an Algorithm

- Math's Problem → Calculate total of two numbers.
 - Examples of
 Pseudocode
 - a notation resembling a simplified programming language, used in program design

START

enter no1, no2

Calculate total

total = no1 + no2

Display total

END

Algorithm

Solve a problem using an Algorithm

- Math's Problem → Calculate total of two numbers.
 - Examples of Flow Chart
 - a graphical representation of algorithm in relation to its sequence of functions

Algorithm

Solve a problem using an Algorithm

- Math's Problem →
 Finding an Area of a START
 Rectangle
 - Examples of
 Pseudocode
 - a notation resembling a simplified programming language, used in program design

enter width, height Calculate area of rectangle area of rectangle = width x height Display area of rectangle

Note: ** input/enter/key in/ read ** output / display / print

Algorithm

Solve a problem using an Algorithm

- Math's Problem →
 Finding an Area of
 Rectangle
 - Examples of **Flow Chart**
 - a graphical representation of algorithm in relation to its sequence of functions

Footer Text

10/30/2015 • 27

Algorithm

Solve a problem using an Algorithm

- Math's Problem → Mean for 2 Marks
 - Do Problem Analysis (prepare an IPO)

Input	Processing	Output

8.2.3.1

Algorithm

Solve a problem using an Algorithm

Math's Problem → Mean for 2 Marks

START

. .

. .

. .

. .

END

• Examples of

Pseudocode

 a notation resembling a simplified programming language, used in program design

Footer Text

Algorithm

Solve a problem using an Algorithm

- Math's Problem →
 Mean for 2 Marks
 - Examples of Flow Chart
 - a graphical representation of algorithm in relation to its sequence of functions

START

Algorithm Control Structures

Sequence	Selection	Repetition
series of statements that execute one after another	statement is used to determine which of two different statements to execute depending on certain conditions	statement is used to repeat statements while certain conditions are met

8.2.3.2

Sequence

series of statements that **execute one after another** all examples from previous slide have already shown a sequence control structures.

An arrow shows the execution of every block (in a flow chart), one after another, this is a **SEQUENCE** control structure to solve a problem.

• Example: How to make a tea drink

Selection

statement is used to determine which of two different statements to execute **depending on** certain **conditions**

A diamond (in this case is a **SELECTION**) determine whether the resulting process is TRUE or FALSE – and it will flow to one direction

Selection

statement is used to determine which of two different statements to execute **depending on** certain **conditions**

The program will display the message "Over limit" if speed > 90

Selection

statement is used to determine which of two different statements to execute **depending on** certain **conditions**

The program will display the message "PASS" if UPS > 50, otherwise, display message "FAIL".

Selection

statement is used to determine which of two different statements to execute **depending on** certain **conditions** If the program receive an input of **UPS = 60**, then the data flow is presented by the dotted line ..

Selection

statement is used to determine which of two different statements to execute **depending on** certain **conditions** If the program receive an input of **UPS = 30**, then the data flow is presented by the red line ..

Conclusion For Control Structure : **SELECTION**

decisions (selections): statement(s) is (are) executed if certain condition gives TRUE or FALSE value.

Footer Text

10/30/2015 • 39

Repetition

statement is used to repeat statements while certain conditions are met A diamond (in this case is a **REPETITION**) if the value is TRUE, data will loop (in the **loop body**) and will out-of-loop when the reach FALSE. dashed line show an area of the **Loop** Body

Repetition

statement is used to repeat statements while certain conditions are met

If water boil is FALSE (meaning not yet boil to 100 degree Celsius, temp < 100), keep it boiling until the water is boiled (temp = 100 deg. Celsius)

Repetition

statement is used to repeat statements while certain conditions are met If temp < = 100 is TRUE (meaning water still not boil) keep it boiling until the temp reach 100, then it will stop.

10/30/2015 • 43

10/30/2015 • 45

EXERCISE

 1. (a) Write a pseudocode to display "Kolej Matrikulasi Perak".

(b) Convert the pseudocode info flowchart.

 2. (a) Write a pseudocode to calculate average of two numbers.

(b) Convert the pseudocode info flowchart.